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Universality of an irreversible kinetic gelation model
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We present Monte Carlo results for the critical exponentnd 8 and the amplitude rati® of percolation
susceptibilities for kinetic gelation model. The valuesyofind v for the kinetic gelation model have been
reported to be roughly the same as the standard percolation values, but the amplituBehatibeen found
to differ strongly from the percolation value, implying that the kinetic gelation model might be in a different
universality class from that of the standard percolation model. However, our estimates exhibit thaf Both
andR are similar to the corresponding percolation values within the statistical errors, and thus, we are not able
to rule out the possibility of strong universality between the two systems. We point out that the cause of this
difference may be the different sampling technique used for measuring the percolation susceptibilities.
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I. INTRODUCTION universality between kinetic gelation and percolation models.
This conclusion, however, was ruled out by more elaborate
The “kinetic gelation” is the irreversible growth model calculations and the fractal dimension was found to be simi-
designed to investigate the formation of an infinite macrodar to the percolation value, independentopf{ 10]. Consid-
molecule, i.e., gelatiofil]. The first study of the sol-gel tran- ering these works, it seems that various critical exponents for
sition was carried out by Florf2] and Stockmayef3] by a  the kinetic gelation model are similar to the corresponding
simple model which was later identified as a percolation on gercolation values, while the amplitude ratio still remains
Bethe lattice. Manneville and de Selzg have developed a unresolved. This raises us the suspicion for a “strong” uni-
more realistic model of additive copolymerization by radi- versality between the two systems, leaving the possibility of
cals. In such a model, initially all sites are assumed to be iunusual “weak” universality in the sense that only the static
a sol phase, which consists of small monomers of multipleexponents are the same while the amplitude ratio differs.
functionalities. The gelation is initiated by radicals which  Recently, similar results have been reported for various
saturate, opening up a double bond of a monomer and leaypercolation models for which the critical exponents are the
ing one bond in the monomer unsaturated. This unsaturateshme but the amplitude ratio is found to be considerably
bond acts as a new radical which, in turn, opens up anothetifferent from the lattice percolation value. Kiet al. [11]
double bond of the neighboring monomer. As this processiave carried out simulations for randomly bonded percola-
continues, an infinite macromolecule occurs at a certain fracion and obtained the exponemtclose to the lattice perco-
tion of the polymerized sites, i.e., at gel-pojnt. lation value, while they estimatel to be at least one order
The universality of the kinetic gelation model has beenin magnitude smaller than the percolation value. In their dis-
intensively studied via Monte Carlo simulations. Herrmanncussions on this “unusual” behavior, they have referred to
et al. [5,6] carried out simulations in three dimensiof3D) the kinetic gelation model as a similar example. Motivated
and found that the critical exponengsand v, which charac- by their work, simulations for continuum percolations of
terize, respectively, the susceptibility and the correlationvarious objects, such as overlapping spheres, capped cylin-
length, are roughly the same as the corresponding percolaers, widthless sticks, overlapping disks, and penetrable-
tion values; however, the amplitude rafoof susceptibili- concentric-shel[PCS model, were also carried out and the
ties, which is supposed to be universal, has been found to lresults obtained were, in principle, similar to those of the
considerably smaller than that of a percolation model. Basecandomly bonded percolation moddi2,13.
on this, they claimed that the kinetic gelation model belongs More recently, Lee and his collaboratdr4—16 studied,
to a universality class different from that of the lattice per-in a series of works, the continuum percolations of overlap-
colation. Similar conclusion was also drawn in 2D by Rush-ping disks and spheres and of PCS model and the randomly
ton et al. [7], who obtained both the exponents and the ambonded percolation both in 2D and 3D, devoting for accurate
plitude ratio considerably different from the percolation determinations oR. He found several possible sources of
counterparts. Familj8] also estimated the fractal dimension errors occurring in estimating which were mostly caused
dr of an infinite network of gel phase in 2D and found thatby the finite size effect. After the finite size effect carefully
dr depends upon the concentration of initiatassand is  taken into account, he showed that the valueRofvere
smaller than that of a percolation network. Since the fractakimilar to the percolation values for all models he studied,
dimension of an infinite percolation cluster is related to theindicating astrong universality among the off-lattice, con-
static critical exponentg andv viadge=d—B/v [9], d be-  tinuum percolations of such models and the standard lattice
ing the embedding lattice dimensionality, the different esti-percolation model. In this line of study, it is natural to make
mates ofdg imply that at least one of the critical exponents clear whether or not the kinetic gelation model is also in this
is different from the percolation value, suggesting a differentvein.
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In this paper, we study by Monte Carlo simulation thebond cannot be completed, another attempt is made with a
critical behavior of the kinetic gelation model both in 2D and different active center. We keep track of the positions of all
3D. We estimate the exponenjsand 3 characterizing, re- active centers and, when an antive center is trapped by being
spectively, the susceptibility and the gel fractiomhich is  surrounded by closed sites or any two active centers happen
equivalent to the order parameter in critical phenomenatio meet and annihilate, we eliminate such active centers from
given as the list. This allows us to continue the simulations until ei-
—y ther all active centers are trapped or the desired valugs of
C-(Pc=P) for p<pc (1) are achieved. This way of checking the trapping of the sys-
C.(p—py)~? for p>pe, tem is different from the previous works in which the simu-
lation is terminated if a certain number of attempts of poly-

x(p)= g 'nes?~

with y=+v', and merization are failed by selecting either a trapped active
center or an already completed bond.
, The degree of polymerization can be determined in two
=n— ~(D— B >
Gp=p Zs NsS~(P=Pc)™ for p=pe, @ ways. First, we take the statistics whenever the desired num-

ber of monomers are polymerized, and second, the statistics
where ng denotes the density of clusters of sigeand the is sampled after a certain number of bonds are completed.
prime implies that the spanning cluster should be excluded iThe former provides us with data at exact concentration,
the sum. The paramet@, corresponding to the probability while the latter allows us to sample the data at a certain
of occupation in the percolation, is defined as the concentranterval of polymerization time. We, however, found that
tion of the polymerized sitef7], or often as the fraction of both methods yield essentially the same results within the
the polymerized bonds[5,6]. The amplitude ratio statistical errors. In this paper, we present our simulation
R=C_/C., which is known to be universal for standard data obtained by the latter method so that our data can be
percolation mode[17] and is believed to be so for other utilized for comparison with those of the previous works.
percolation models as well while the amplitudés andC .
themselves are nonuniversal, is intensively studied for vari- B. Three dimensions
ous values ot, and for various size system.

We have calculateg(p) andG(p) for various size sys-
tems. The largest cluster has been eliminated only alpgve
for the implication of the prime on the sums in E@$) and
(2). (Note that since we do not know accurate values of th
gel point we estimatey both with and without the largest
cluster for allp and select appropriate data to use for analy
ses) We found that the values of bothand g are within the
errors of less than 10% from the corresponding percolatio
values both in 2D and 3D. This agreement is even better th
the agreement of the previous results with the percolatio
values. Our estimates @& are also within the error bounds
of the percolation values for all cases gf, suggesting a
stronguniversality between percolation and kinetic gelation.

In 3D, the simulation method is basically similar to that in
2D, except that the algorithm is designed to describe the
physical situation better than in 2D. Each site of simple cubic
éattice is initially occupied by either a tetrafunctional unit
with concentratiorc; or a bifunctional unit with concentra-
tion ¢, (=1—cy). Initially a fractionc, of 3L3 links (bond3
connecting nearest neighbors are assumed to be occupied
Igandomly by initiators, each end of those links carrying an

ctive center. Since the number of bonds in a simple cubic
attice of sideL is 3L° and since each initiator contributes
two active centers, the total number of active centers is
6¢,L3. The sampling and averaging procedures are essen-
tially the same as those in 2D.

[ll. RESULTS AND DISCUSSIONS
Il. MONTE CARLO PROCEDURE
our simulati thod basicallv similar to th f We have carried out simulations for various valuesof
the urre\?ilg:,lusivgrr;(smoef Roeti]a;(r)er ngélcn% %fsgg'f?é] ?or ;S’e Oand L for both 2D and 3D, and the results were averaged
simEIations At the be inﬁin of each simulation all lattice VS 100-5000 realizations, depending on the values, of
. ’ ginning . ’ . dL. (Note that the number of active centers is initially
sites are assumed to be in the sol phase with the fractions g

the tetrafunctional unitg, and the bifunctional units GiL? in 2D while that in 3D is @L°.)
: t : b Data are analyzed in a usual way. We plot on a double
with ¢;+c,=1 (no solvent molecule is assumed

logarithmic scale the susceptibilities calculated excluding the
_ _ largest cluster fop>p. and without excluding the largest
A. Two dimensions cluster forp<p.. We then measure accurate valuepgf,
Since the monomers of a bifunctional unit contribute onlyassuming the same power law below and above it. This value
on a linear link, all sites on a square lattice are initially of p™is considered to be an effective gel point for the given
assumed to be occupied by tetrafunctional units, cgs1 size of system and might Hslightly) different from the true
andc,=0. Thec,L? initiators of concentratiort, are ran-  p.. It should be noted that the paramegeis defined as the
domly distributed in a given system, assuming that each iniconcentration of the polymerized sites in 2D and the fraction
tiator acts as an active center for polymerization. Then, onef the polymerized bonds in 3D. We defined it as this so that
of those active centers and its neighboring bond are selecteahe can compare our data with those of the previous works.
randomly. If the new site connected by that bond is yet un{Note that our definition op in 2D is identical to that in Ref.
saturatedi.e., has less than four incident bopdde bond is [7] and that in 3D is identical to that in Ref$5,6].)
completed and the active center is moved to a new site. If th&he values of y and R can be obtained, respectively,
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FIG. 1. Monte Carlo data of for 2D kinetic gelation model for
¢,=0.05 for three typical values df, plotted on a double logarith- FIG. 2. Monte Carlo data d&(p) for 2D kinetic gelation model
mic scale. The dashed, dotted, and solid lines are the regression ff@f ¢,=0.05 for two typical values of, L=1500 (squarg and
obtained assuming the same power-law behavior below and above=2000 (circle). The solid line on the upper set of data is the
Pe. regression fit usingp.=0.5989, obtained from the scaling relation
of Eqg. (3) as shown in the inset.

from the slope of the power-law fits and from the displace-we obtainedp.=0.5989 forc,=0.05, using the values of

ment between the fits below and abq'. p™ obtained from the power-law fits of. Plotted in Fig. 2

are the fractions of the largest cluster for the two largest

systems we used in the simulation, i.e., fo=1500 and

2000. The inset shows the extrapolatiorp@'i‘; the intercept

on the abscissa is the gel-point. Since the gel fraction is the
In order to investigate how the size of system affects theraction of the largest cluster aboye, the exponenp can

critical behavior, we have carried out extensive simulationgye obtained from the slope of the plot forp, (upper sets

for a selected value df, in each dimension and for various of datg. The regression fitsolid line) gives 8=0.13+0.01,

size systems, i.eg;=0.05 forL =300, 500, 800, 1000, and which is close to the percolation valyg= = [9].

2000 in 2D, anct;=0.003(with ¢;=0.4) for L=40, 60, 80 We also estimated from our data the amplitude ratio of
100, 150, and 200 in 3D. susceptibilities. By numerical investigation, we found that
Plotted in Fig. 1 on a double logarithmic scale is the 2Dthe reliable data oR for smallc, , such ag,;<0.05, can only

Monte Carlo data o (for c,=0.05) for three typical values pe obtained for sufficiently largd.. For example, for
of L, L=500, 1000, and 2000. Clearly, data for all selectedc, =0.05, the estimates far< 500 vary significantly depend-
values ofL exhibit reasonably good power-law fits. The es-ing on how the fitting region of the power-law is selected;
timates ofy from the plot arey=2.49+0.05 forL =500 and  however, forL beyondL =500, data yield consistent values
L=1000 andy=2.46=0.06 forL=2000.(Note that the er- of R. We found that the estimates & for 500<L <2000
rors listed are the regression errors and there might be addippear to decrease slightly hsincreases and all estimates
tional statistical errors not taken into accolifithese values |ie hetween 173 and 198 which are close to the percolation
are slightly larger than the known percolation valye 3;  valueR=196+40[19,20. However, the size dependence of
[18]. However, considering that the errors pfare typically R for the gelation model is not as significant as that for the
of the same order as the value of susceptibility itself, they argontinuum percolations of the PCS model and for the ran-
considered to be similar to the percolation value. Results fofomly bonded percolations. All estimatesRffor variousL
other values of not shown in the figure are basically similar are within the error bounds of the percolation value.
to those in Fig. 1. From these estimates, we assert that the amplitude ratio as
The exponenp can be obtained from the power-law plot well as the various critical exponents for the kinetic gelation
of the gel fractionG(p), given in Eq.(2). However, we model is similar to the corresponding percolation value in
found from numerical investigation that the estimatggos 2D, suggesting a strong universality between percolation and
very sensitive to the choice qf.. Thus, without accurate gelation models, unlike the previous wdrK|. The estimates

value ofp,, it is not simple to estimat@ from the power- of y, p., andR for various values of. are summarized in
law plot, unlike fory. In order to resolve such a difficulty, Table I.

A. Critical exponents and amplitude ratio
for various size systems

we estimate,, in a way similar to the renormalization cal- Results in 3D are qualitatively similar to those in 2D.
culations, by extrapolating the valuespﬁ“(L) intheL—oo Plotted in Fig. 3 are the data gf for ¢,=0.003 andc,=0.4
limit, using the scaling relation for selected values of: L=60, 100, and 200. The values

off i estimated from the plot arey=1.87+0.06 for L=60,
|pe—pg (L)[~L~H. (3  y=1.84+0.02 for L=100, and y=1.81+0.03 for
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TABLE I. The estimates 0p", y, andR for variousL from the

power-law fits for 2D kinetic gelation model fay = 0.05. '
3D (C_,=0.003)

L pef(L) y(L) R(L)

300 0.60221 2.530.10 21145

500 0.60116 2.490.05 198+ 30 _~
800 0.60038 2.480.07 18320 t?
1000 0.60014 2.490.05 18320 e
1500 0.60088 2.490.08 18720 gﬂ
2000 0.59979 2.460.06 17315 -

L=200, all of which are consistent with the percolation

O L=200
value y=1.80[9].
The values ofR estimated from the displacements be- —4 !
tween the power-law fits fgp<<p. andp>p. were found to —2.5 -1.5 -0.5
be R=6.8 for L=60 andL=100 andR=7.0 for L=200. log,, [1-p/p,|

These values appear to be similar talthough slightly
smaller thahthe known percolation valué&nown to be be-
g’tﬁegsﬁgg? ;Elzg]é;blué C]‘?)?S'[ﬁ:rg:rlzela\:gﬁjretsham? tgr? derew- L=200(circle), plotted usingp.=0.0838 obtained from the scaling
et | t analysis.
[5,6]. The cause of such a large difference is due to the Y
different sampling technique of(p). Although the authors - . _ L . .
of the previous works did not mention how they sampled for(s_orl:dh“ne) ylellds.B—O.TthE.é)S, \gh'Ch IS again consistent
x,» we found by numerical investigation that they have mea VIt the percolation va ug=0.4[9]
suredy excluding the largest cluster both below and above
p.- As an evidence, we found the peak xfp) for L=60 B. Finite size scaling analyses
(for ¢,=0.003) to be 1.4%10° at p=0.083 which is nearly
7 times larger than that obtained in the previous work6h
for the same parameters. Such an underestimatiop(pjf
close to(but still less thah p, appears to have yielded an

FIG. 4. Monte Carlo data d&(p) for 3D kinetic gelation model
for ¢,=0.003 for two typical values of, L=150 (square and

In the previous subsection, we have presented the critical
exponents and the amplitude ratio for various size systems.
In many instances, researchers employ the finite size scaling
underestimation irR. ana_llyses of t_he susceptibiliti_e_s and the order parameters to

Shown in Fig. 4 is the gel fraction plotted on a doubleve”f.y t.h-e estimates of the critical exponents and to estimate
logarithmic scale fot. = 150 and 200, using, = 0.0838 ob- the infinite system results d®. However, Lee has recently

: . T - .. shown that there are subtleties for the finite size scaling
tained from the scaling relation in EB). The regression fit analyses if the estimates & depend upon the size of the

system. He showed that such scaling analyses failed to pro-
vide an infinite system result &® for the cases of the con-
tinum percolation of PCS model and the randomly bonded
3D (€,=0.003) percolation model. However, we have seen that the ampli-
1 tude ratio for the kinetic gelation model does not depend
strongly on the size of system. It is, therefore, interesting to
study the finite size scaling analyses with our Monte Carlo
data for kinetic gelation model.

The susceptibility defined in Eq1) for any finite system,
x(p,L), can be written as a function of two competing
lengthsL and ¢ (~|p—pc ™ "):

x(p,.L)=|p—p¢ 7f(L,&). (4

logm X

Since, according to the universality, there should be only one
relevant length, one can writg(L,£¢) as a function of the
ratio of two lengths, i.e., as a function &f éxL|p—p¢|”

0 . nearp.. After a change of variables, one can write the scal-
-15 -1.0 —0.5 ing relation as

1°g1° |1_p/pc|

—— L=200

x(p.L)=L"""g(L¥"|p—pc), (5)
FIG. 3. Monte Carlo data gf for 3D kinetic gelation model for | :

¢,=0.003 andc,=0.4 for three typical values df, plotted on a
double logarithmic scale. with the extreme conditions of the scaling function given as
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FIG. 5. Scaling function of Eq5) plotted for 2D kinetic gela-
tion model usingy=1%, v=14, and p.=0.600 (left), and for 3D
model usingy= 1.8, v=0.88, andp.=0.0839(right). Monte Carlo
data show fairly good data collapsing for both cases.

const for x<1,
g(x)= (6)

NG for x>1.

This implies that the data of(p,L)L~”'” for variousL and

curve.
We plotted the scaling function for variols using the
percolation values of and vy, i.e., v=4 and y=% for 2D

andv=0.88 andy=1.8 for 3D. Figure 5 is the scaling func-

tion for ¢,=0.05 in 2D (left) and ¢,=0.003 in 3D (right)
kinetic gelation models, obtained using,

p. are those which were obtained by extrapolatpfd(L)

using the scaling relation in E¢). Clearly data show good

collapsing in the critical region whel@—p¢/<1 andL>1
hold. This is a good indication that the valuesiofnd vy for

the kinetic gelation model are similar to the corresponding©' Ci

respectively,
p.=0.600 and 0.0839. It should be noted that these values of

o

log,, [6(P)L?"”]
®
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FIG. 6. Scaling function of Eq(7) plotted for 2D kinetic gela-
tion model usingB= = and v=13 (left) and for 3D model using
B=0.4 andv=0.88 (right).

L deviate slightly from those of largdr. We believe this
behavior to be due to that the data for those valueg afe
out of the scaling region.
The degrees of data collapsing for the scaling relations in
Egs.(5) and(7) are much better than the previous works of
this kind, particulary in the region dp—p¢|<1. This leads
p plotted againstx=LY"|p—p.| collapse onto a single us a conclusion that the values of the universal critical expo-
nents and the amplitude ratio for the kinetic gelation model
are similar to the corresponding percolation values.

C. Simulations for various initiator concentrations

Since the exponent in 2D were found to vary depending
on the values o€, [7] and since slightly different values for

differentc, were also reported in 3[21], it is interesting to
carry out simulations for other values ofto see whether or
not c, is relevant. We thus carried out additional simulations

=0.01, 0.02, 0.1 and 0.2 in 2D, each fo=300-2000,

percolation values. If one measures the slopes and the dignd forc,=0.0003 and 0.03 in 3D, for=40-200.(Note
that these values of, are identical to those used in the

those we presented earlier. We have also studied similar scegarlier works)
Results ofy for ¢,=0.1 and 0.2 forL =1500 and those

for ¢,=0.02 for L=2000, all in 2D, are plotted in Fig. 7.

able to observe the data collapsing better than those in Fig. &stimates of §, pﬁﬁ) from the plot are (2.430.03, 0.670%
Similar analysis can also be made for the gel fraction to(2.45+0.04, 0.7528 and (2.4%0.05, 0.518Y for ¢,=0.1,

0.2, and 0.02, respectively. The errors are again the regres-

sion errors. The values af for all three cases are considered

to be consistent with one another and are again close to the

percolation value. Results fa;=0.01 are also similar; the

estimates arey=2.40+0.10 andpﬁﬁz 0.4628 for a system

of L=2500. These results, together with the previous result

for ¢,=0.05, imply that the value of, is irrelevant as long

placements of the fits, one would getand R similar to

ing analyses with the different sets pfand v, such as those
obtained in the previous work§-7]; however, we were not

verify our estimates of3. The scaling function of5(p,L)
can be written, in a similar way to the susceptibility, as
G(p,L)=L"#"h(L*|p—pd|). (7)

Plotted in Fig. 6 are the data fa&(p,L)L?"" against the
scaling variablex=L"|p—p,| for 2D (left) and 3D(right)

kinetic gelation models for the same parameters as in Fig. &s the exponeny is concerned.

The values of. used in the plot ar@.=0.6022 for 2D and

mensions, implying that the exponegtfor the kinetic gela-
tion model is also similar to the percolation value. fpofar
away fromp, (rightmost region in the plojsdata for smaller

Our work is contrasted to the previous work, where con-
p.=0.084 for 3D, the former of which is slightly larger than siderably different values of have been obtained depending
that we used for the scaling gf(p,L). (We have tested with on ¢,: y=5.3+0.8 for ¢,=0.01, y=3.8£0.5 for ¢,=0.05
other values ofp., but these values yielded the best dataand y=2.6-0.4 for ¢,=0.2 for systems of size up to
collapsing) Clearly data show good collapsing for both di- L=400. These estimates are unusual because, according to
the universality concept, the value of is believed to be
irrelevant as long as it is not extreme, i.e.#0 andc,#1.

The primary cause of such strange results is again due
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Our estimates oR are also very different from those of
the previous work. While the previous authors reported
R=250*+70, 140+ 45, and 8@ 20 for ¢,=0.01, 0.05, and
0.2, respectively, we obtained similar to the percolation
value for all selected values of. As we have seen in Fig. 1,
the estimates oR for ¢,=0.05 were between 173 and 198
(see Fig. 1, depending orl. For other values of,, i.e.,
¢,=0.01, 0.02, 0.1, and 0.2, the estimates are not very dif-
ferent from that forc,=0.05 (Fig. 7). For the latter two
cases, i.e., for;=0.1 and 0.2, we obtained between 175
and 190 depending on the valuesamfandL. On the other
hand, for the former case of,=0.01, we attempted to
sample the data for the concentration of polymerized gites

~8- ¢,=0.1 as large as possible. However, we were not able to sample
A ,=0.2 sufficient data fop=0.49 due to the trapping of the systems;
-1 . = all active centers are either trapped or annihilated before the
—R.2 -1.4 —0.6 desired value op is achieved. With the sampled data, we
log,, |1-p/p | estimateR between 150 and 170 for variols which are

slightly smaller than those of our earlier estimates for other
values ofc,, but are still within the error bounds of the
FIG. 7. Monte Carlo data of for 2D kinetic gelation model for  percolation value. From these estimates, we are not able to
three different values Ot| . The vertical displacements of the rule out the poss|b|l|ty of atrong universa“ty between the
power-layv fits(sol_id lineg are similar for all cases, exhibiting that percolation and the kinetic gelation models, “strong” in the
the amplitude ratio does not depend stronglycpn sense that the amplitude ratio as well as the critical expo-
nents is the same for two models.
to that the largest cluster has been excluded in the sum in Eq. Similar results for8 were also observed. For all cases of
(1) both below and above,, in that work (while we have c,;, we obtained3 between 0.11 and 0.14hot shown. The
eliminated it only above,), similar to the 3D case that we estimates ofy, 8, R, andp. in 2D are summarized in Table
discussed beforéWe, in fact, estimategy in a way similar  Il, in comparison with the previous estimat@sumbers in
to the previous work and obtained essentially the same reparenthesgs It shoud be noted that the values in the table
sults as those in Ref7].) Since the prime in the sums of were calculated considering the results for various size sys-
Egs.(1) and(2) implies thatthe spanning cluster should be tems, and they are slightly different from those which were
excludedand since the spanning cluster exists abpyewe  presented before for a given size system.
believe that the largest cluster should be excluded only above Results for 3D are not different from those in 2D. For
p.. Although the largest cluster is small enough and it ap¢;=0.0003 and 0.03 withc;=1.0, results were basically
pears to be reasonable to ignore it fior p;, we believe that similar to the case foc,=0.003; the estimates of for vari-
exclusion of it neap, causes significant errors on the mea-ous L are between 1.8 and 1.9 depending on the size of
surements of(p). Since the power-law behavior in E.) system. These estimates are slightly smaller ttatihough
is expected to hold close to,, an exclusion of the largest consistent, within the errors, withihe previous estimates in
cluster results in the power-law region shifted away fijgmn =~ Refs.[5] and [6] and are closer to the known percolation
Such a shift may possibly yield the estimatesyolind R value, particularly forc,=0.0003.
significantly deviated from the true values, as it was already The amplitude ratio for the selected casescpf were
pointed out by Led16] for different models. It should also between 8 and 9, as long as the size of system is not too
be noted that our systems are much larger and the statistics$snall. Considering these values and the statistical errors of
also at least one order in magnitude better than the previoug(p), it seems that the amplitude ratio of susceptibilities for
work of Ref.[7]. the kinetic gelation model is also similar to the percolation

TABLE Il. The estimates ofy, 8, R, andp, for 2D kinetic gelation model for various values of, in
comparison with the results in Réf7] (in parenthesesThe errors listed are the regression errors and there
might be additional statistical errors.

C Y B R Pe

0.01 2.40-0.10 0.14-0.01 160G+ 30 0.4618
(5.3£0.8)) (0.15:0.04) (250=70) (0.43:0.005)

0.02 2.49-0.10 0.12£0.02 175-30 0.5188

0.05 2.49-0.05 0.13:0.01 185+ 30 0.5989
(3.8£0.5) (0.16:0.04) (140+45) (0.568-0.05)

0.1 2.45-0.03 0.1x0.02 180t 25 0.6709

0.2 2.470.06 0.12£0.02 185+ 20 0.7525

(2.6+0.4) (0.14+0.04) (80~ 20) (0.732£0.005)
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TABLE lll. The estimates ofy, 8, R, andp, for 3D kinetic gelation model for various values of, in
comparion with the results in Refg5,6] (in parentheses

¢ y B R 100X p,
0.0003 1.85:0.10 0.33-0.04 8.4-1.7 3.485
(2.3+0.4) (1.7-0.6) (3.2
0.003 1.84-0.06 0.42-0.03 6.9-1.2 8.384
(1.98+0.10) (0.37:0.09) (2.8-1.0) (8.35+0.05)
0.03 1.81-0.05 0.40-0.01 8.3-1.0 14.020
(4.2+1.2) (16.6

value, implying that both models might belong to the samepointed out for off-lattice percolation models. While the larg-
universality class as long as our simulations are carried ouest cluster has been excluded in the sum for the susceptibility
The estimates ofy, 8, R, and p. for 3D kinetic gelation both below and abov@. in the previous works, we have
model are compared with the previous estimates in Table Illexcluded it only above, . Such a different sampling method
affects only the susceptibility and, accordingly, the estimates
IV. SUMMARY AND CONCLUSIONS of y andR, leaving the gel fraction unaffected. We believe
i .. thisto be the reason that our estimate@ddre similar to the
We have studied by Monte Carlo methods the statisticaleyious estimates, which were found to be close to the per-
properties of the irreversible kinetic gelation model in bothq|5tion values in both 2D and 3D.
2D and 3D. We have estimated the exponeptand 8 and Our work, together with the previous works of Lee and
the amplitude ratid from the Monte Carlo data of the sus- s collaboratorf14—16, thus resolves the unusual critical
ceptibility and the gel fraction. Results forandR in 2D are  penavior of the amplitude ratio of percolation susceptibili-
very different from those of the previous work. While in the tjes. The previously reported nonuniversal behaviors for
previous work considerably different values have been obygarioys off-lattice percolation models and for the kinetic ge-
served depending on the valuescpf we obtained consistent |ation model appear to have been caused artificially from the
values, within the statistical errors, for all selected values Ofapproximate method of sampling(p) in the Monte Carlo
¢, . The estimates dR in 3D are also very different from the - ,r5cedure. With the more elaborate technigRehas been

previous work. Whereas they obtaine® considerably found to be universal as it is expected from the field theoret-
smaller than the known percolation value, we obtained ifc3| calculations.

rather close to the percolation value. From these estimates,
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